EIC Science: e-A Collisions

Thomas Ullrich
May 9, 2011
EIC Generic Detector R&D Advisory Committee Meeting
BNL

Quantum Chromodynamics QCD

- Calculations:
- hard processes (large m, p, Q²) ⇒ perturbative QCD
- ▶ everything else ⇒ Lattice QCD, effective field theories, AdS/CFT?

Impressive examples but there is much about the strongly interacting world we do not understand

New Frontier: "Gluonic" Structure of Matter

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

QCD is the "nearly perfect" fundamental theory of the strong interactions

F. Wilczek, hep-ph/9907340

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom
 - Confinement
 - ▶ Phases of QCD (T > 0, μ _B > 0)

New Frontier: "Gluonic" Structure of Matter

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

Gluons

- Self-interacting force carriers
- Dominate structure of QCD vacuum

New Frontier: "Gluonic" Structure of Matter

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A_{\mu}^{a} - \left(\frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}\right)$$

Gluons

- Self-interacting force carriers
- Dominate structure of QCD vacuum
- Responsible for >94% if visible mass in universe
 - Quenched QCD explains mass spectrum to ± 10%
- Determine essential features of QCD

Despite this dominance, the properties of gluons in matter remain largely unexplored

Bhagwat et al., nucl-th/0710.2059

Chiral Pertubation Theory In chiral SU(3) limit: $M_p = 880 \text{ MeV}$

Meißner, hep-ph/0501009

Sum Rules & Trace Anomaly Quark kinetic + potential energy = only 1/3 of M_p J. Ji, PRL 73, 1071

How to Study Gluons in Matter?

Hadron-Hadron

p eeeeeeee p/A

- Test QCD
- Probe/Target interaction directly via gluons
- lacks the direct access to partons kinematics
- probe has complex structure

Electron-Hadron (DIS)

- Explore QCD & Hadron Structure
- Indirect access to glue
- High precision & access to partonic kinematics
- probe point-like

Both are complementary and provide excellent information on properties of gluons in the nuclear wave functions

Precision measurements ⇒ ep, eA

Deep Inelastic Scattering (DIS)

Resolution power ("Virtuality"):

$$Q^2 = -q^2 = -(k - k')^2$$

$$Q^2 = 4E_e E_e' \sin^2\left(\frac{\theta_e'}{2}\right)$$

Inelasticity:

$$y = \frac{pq}{pk} = 1 - \frac{E'_e}{E_e} \cos^2\left(\frac{\theta'_e}{2}\right)$$

p fraction of struck quark

$$x = \frac{Q^2}{2pq} = \frac{Q^2}{sy}$$

$$\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$$
quark+anti-quark gluon momentum distributions distribution

Quark and Gluon Distributions

Structure functions allows us to extract the quark $q(x,Q^2)$ and gluon $g(x,Q^2)$ distributions.

In LO: Probability to find parton with x, Q² in proton

$$\Rightarrow {}^{\bullet} F_2 \atop {}^{\bullet} dF_2/dlnQ^2 + {}^{\text{pQCD+}}_{\text{DGLAP Evolution}} \atop f(x, Q_1^2) \rightarrow f(x, Q_2^2)$$

Quark and Gluon Distributions

Structure functions allows us to extract the quark $q(x,Q^2)$ and gluon $g(x,Q^2)$ distributions.

In LO: Probability to find parton with x, Q² in proton

Quark and Gluon Distributions

Structure functions allows us to extract the quark $q(x,Q^2)$ and gluon $g(x,Q^2)$ distributions.

In LO: Probability to find parton with x, Q² in proton

Proton is almost entirely glue by x<0.1(for $Q^2 = 10 \text{ GeV}^2$)

Issues with our Current Understanding

Linear DGLAP evolution scheme

- Weird behavior of xG and F₁ from HERA at small x and Q²
- $G(x,Q^2) < Q_{sea}(x,Q^2)$?
- Unexpectedly large diffractive cross-section
- built in high energy "catastrophe"
 - xG rapid rise violates unitary bound

Linear BFKL Evolution

- Density along with σ grows as a power of energy: N ~ s[∆]
- Can densities & cross-section rise forever?
- Black disk limit: σ_{total} ≤ 2 π R²

Saturation/Color Glass Condensate

In transverse plane: nucleus/ nucleon densely packed with gluons

McLerran-Venugopalan Model:

- Weak coupling description of the wave function
- Gluon field A_μ~1/g ⇒ gluon fields are strong classical fields!
- Most gluons k_T ~ Q_S

Non-Linear Evolution:

- At very high energy: recombination compensates gluon splitting
- Cross sections reach unitarity limit
- BK/JIMWLK: non-linear effects ⇒ saturation
 - characterized by Q_s(x,A)
 - Wave function is Color Glass Condensate in IMF description

Reaching the Saturation Region

HERA (ep):

Despite high energy range:

- F₂, G_p(x, Q²) only outside the saturation regime
- Regime where non-linear QCD matters (Q < Q_s) not reached (is it close?)
- Need also large Q² range
- Only way in ep is to increase √s

Would require a new ep collider at √s ~ 1-2 TeV (Hera ~ 0.3 TeV) ⇒ unrealistic (at least in the US)

Raison d'être for e+A

Scattering of electrons off nuclei:

Probes interact over distances $L \sim (2m_N x)^{-1}$

For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon \Rightarrow probe interacts *coherently* with all nucleons

"Expected"

Nuclear Enhancement Factor

(Pocket Formula):

$$(Q_s^A)^2 \approx cQ_0^2 \left(\frac{A}{x}\right)^{1/3}$$

Enhancement of Q_S with $A \Rightarrow$ non-linear

QCD regime reached at significantly lower energy in A than in proton

Raison d'être for *e*+A

Scattering of electrons off nuclei:

Probes interact over distances $L \sim (2m_N x)^{-1}$

For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon \Rightarrow probe interacts *coherently* with all nucleons

"Expected"

Nuclear Enhancement Factor

(Pocket Formula):

$$(Q_s^A)^2 \approx cQ_0^2 \left(\frac{A}{x}\right)^{1/3}$$

- EIC Strong hints of saturation from RHIC: x ~ 10⁻³ in Au
 - ▶ \sqrt{s} ~ 100 GeV: E_e = 5-30 GeV, E_A = 50 -130 GeV
 - L(EIC) > 100 × L(HERA)

e+A Science Matrix & Golden Measurements

Primary new science deliverables	What we hope to fundamentally learn	Basic measurements	Typical required precision	Special requirements on accelerator/ detector		Alternatives in absence of an EIC	•	Comments
integrated nuclear gluon distribution	The nuclear wave function throughout x-Q² plane	F _L , F ₂ , F _L ^c , F ₂ ^c	What HERA reached for F2 with combined data	displaced vertex detector for charm	stage I: large- x & large- Q^2 need full EIC, for F_L and F_2^c	p+A at LHC (not as precise though) & LHeC	First experiment with good x, Q ² & A range	This is fundamental input for A+A collisions
k _T dependence of gluon distribution and correlations	The non- linear QCD evolution - Qs	SIDIS & di- hadron correlations with light and heavy flavors		Need low-pt particle ID	SIDIS for sure TBD: saturation signal in di- hadron p _T imbalance	I) p+A at RHIC/LHC, although e+A needed to check univerality 2) LheC	Cleaner than p+A: reduced background	
b dependence of gluon distribution and correlations	Interplay between small-x evolution and confinement	Diffractive VM production and DVCS, coherent and incoherent parts	50 MeV resolution on momentum transfer	hermetic detector with 4pi coverage low-t: need to detect nuclear break-up	Moderate x with light and heavy nuclei	LHeC	Never been measured before	Initial conditions for HI collisions – eccentricity fluctuations

e+A Science Matrix & Golden Measurements

- Nuclear gluons at small-x
 - ▶ Inclusive structure functions (F₂, F_L, F₂^c, F_L^c)
 - Di-hadrons (and di-jet) imbalance
 - Exclusive diffractive production (J/ψ, φ, ρ and DVCS)
 - coherent & incoherent
- Nuclear gluons at larger-x
 - Gluon anti-shadowing / EMC effect
- Jets and hadronization
 - Use nuclei to test in-medium fragmentation, pQCD energy loss and parton showers

All Measurements need to be conducted in e+p for reference as well as with varying A

Example 1: F_L Structure Function

$$F_L(x,Q^2) \sim xG(x,Q^2)$$

Momentum distribution of glue

$$ratio = \frac{F_L^{\text{total}} - F_L^{\text{leading twist}}}{F_L^{\text{total}}}$$

J. Bartels, K. Golec-Biernat and L. Motyka, 2011

Example 1: F_L Structure Function

$$F_L(x,Q^2) \sim xG(x,Q^2)$$

Momentum distribution of glue

$$ratio = \frac{F_L^{\text{total}} - F_L^{\text{leading twist}}}{F_L^{\text{total}}}$$

J. Bartels, K. Golec-Biernat and L. Motyka, 2011

Example 2: Dihadron Correlations

Excellent saturation signature:

Either Jets or use leading hadrons from jets (dihadrons)

Dominguez, Xiao and Yuan (2010)

At small x, multi-gluon distributions are as important as single-gluon distributions, they contribute to such di-hadron correlations

beam view

Example 3: Diffractive Events

- Diffractive cross-section σ_{diff}/ σ_{tot} in e+A predicted to be ~25-40%
- Process most sensitive to xG (x,Q²)
- Rich physics program on momentum & spatial gluon distribution

$$e + A \rightarrow e' + J/\psi + A'$$

dσ/dt is Fourier Transform of ρ_{glue}(b)

"Gluonic Form Factor"

Experimental Aspects of e+A

- Multiplicity is low
 - $ightharpoonup N_{ch}(ep) \sim N_{ch}(eA) < N_{ch}(pp)$
- Cross-section is small
 - σ (ep): 0.030 0.060 mb
 - $\sigma(pp) \sim 1000 \times \sigma(ep)$:
- Moderate interaction rate
 - ► 300-600 kHz for 10^{34} cm⁻² s⁻¹ = 10^7 mb⁻¹ s⁻¹

Experimental requirements (acceptance, resolution, granularity) are identical to those in e+p with 2 exceptions due to:

- 1. Radiative corrections
- 2. Detecting nuclear breakup (incoherent vs. coherent diffraction)

Issue for e+A: Radiative corrections

Emission of real photons

- experimentally often not distinguished from non-radiative processes: soft photons, collinear photons
- ⇒ "radiative corrections"

"Ideal" case:
$$Q^2 = -(l - l')^2$$
, $x_B = \frac{Q^2}{2P \cdot (l - l')}$

True case:
$$\tilde{Q}^2 = -(l - l' - k)^2$$
, $\tilde{x}_B = \frac{\tilde{Q}^2}{2P \cdot (l - l' - k)}$

Effect of radiative corrections

Distortion of observed structure function:

$$F_i^{\text{obs}}(x_B, Q^2) = \int d\tilde{x}_B d\tilde{Q}^2 R_i(x_B, Q^2, \tilde{x}_B, \tilde{Q}^2) F_i^{\text{true}}(\tilde{x}_B, \tilde{Q}^2)$$

Radiator functions R_i(I, I', k)

Correction function is fct. of y:

$$r_c(y) = \frac{d\sigma/dy|_{O(\alpha)}}{d\sigma/dy|_{Born}} - 1$$

Dealing with radiative corrections

Method 1

- simple kinematic cuts in W reduce corrections slightly
- not very effective

Method 2

reconstruct x, Q² via hadronic final state

$$\delta_{had} = \sum_{i}^{\#hadrons} E_i (1 - \cos \theta_i) = E_{had} - p_{z \, had}$$

$$p_{t \, had}^2 = \left(\sum_{i}^{\#hadrons} p_{x \, i}\right)^2 + \left(\sum_{i}^{\#hadrons} p_{y \, i}\right)^2$$

$$y = \frac{\delta_{had}}{2E_e},$$

$$Q^2 = \frac{p_{t\,had}^2}{1 - y},$$

$$x = \frac{Q^2}{sy}.$$

Problem in e+A: parton/hadron energy-loss, secondary particle production (typical at low-p_T)

DIS: Where Goes What at Which x, Q²

Summary (e+A)

The e+A program at an EIC is unprecedented, allowing the study of matter in a new regime where physics is not described by "ordinary" QCD

- Explore the Physics of Strong Color Fields
 - Measure properties (momentum & space-time) of glue
 - Explore non-linear QCD
 - Existence of universal saturation regime ?
- Understand how fast partons interact as they traverse nuclear matter & new insight into fragmentation processes
- Clarify the nature of Pomerons

Machine requirements: low-x reach with enough Q^2 lever arm \Rightarrow large \sqrt{s} (needs stage 2 energies)

Detector requirements: as in e+p with exception of forward region for detection of break-up of nuclei

Additional Slides

Rest frame of nucleon/nucleus:

- qq dipole (Muller dipole)
- DGLAP: $\sigma_{qq} \propto r^2 \alpha_s(\mu^2) xG(x,\mu^2)$
 - explodes with r²
 - violates unitarity

Rest frame of nucleon/nucleus:

- qq dipole (Muller dipole)
- DGLAP: $\sigma_{qq} \propto r^2 \alpha_s(\mu^2) xG(x,\mu^2)$
 - explodes with r²
 - violates unitarity
- Saturation: $\sigma_{qq} \propto 1 \exp(-r^2 \alpha_s(\mu^2) x G(x, \mu^2))$

Infinite Momentum Frame:

BFKL (linear QCD): splitting functions ⇒ gluon density grows

Infinite Momentum Frame:

- BFKL (linear QCD): splitting functions ⇒ gluon density grows
- BK (non-linear): recombination of gluons ⇒ gluon density tamed

BK adds:

At Q_s: gluon emission balanced by recombination

Strong Hints from RHIC: Saturation at $x=10^{-3}$?

Disappearance of angular correlations in Run 8 dAu data at forward rapidities ($\log x \sim 2.5 - 3$)

Low gluon density (pp):

pQCD predicts 2→2 process

⇒ back-to-back di-jet

High gluon density (pA):

 $2\rightarrow 1$ (2 \rightarrow many) process \Rightarrow mono-jet

Are RHIC & HERA Results consistent?

- Strong hints of saturation from RHIC: x ~ 10⁻³ in Au
- ep: No/weak hints in DIS at Hera up to x=6.32·10⁻⁵, Q²=1-5 GeV²

Are RHIC & HERA Results consistent?

- Strong hints of saturation from RHIC: x ~ 10⁻³ in Au
- ep: No/weak hints in DIS at Hera up to x=6.32·10⁻⁵, Q²=1-5 GeV²

Are RHIC & HERA Results consistent?

- Strong hints of saturation from RHIC: x ~ 10⁻³ in Au
- ep: No/weak hints in DIS at Hera up to x=6.32·10⁻⁵, Q²=1-5 GeV²
- Finding RHIC and Hera & Q_s scalings consistent
- At pA in RHIC we see the Nuclear "Oomph" $Q_s^2 \sim Q_0^2 (A/x)^{1/3}$

Do EIC energies match the requirements?

eRHIC = RHIC + Energy-Recovery Linac

Both designs in 2 stages

ELIC = CEBAF + Hadron Ring

see talk by Vasiliy Morozov

- see talk by Vladimir Litvinenko
- stage: 5+100 GeV/n e+Au (√s=45 GeV/n)
- 2. stage: 30+130 GeV/n e+Au (√s=125 GeV/n)

- stage: 11+40 GeV/n e+Au (√s=42 GeV/n)
- 2. stage: 20+100 GeV/n e+Au (√s=89 GeV/n)

Do EIC energies match the requirements?

eRHIC = RHIC + Energy \$\frac{10^4}{20}\$

see talk by Vla

1. stage (√s=4

2. stage (√s=1

 $\frac{\mathsf{FLIC} = \mathsf{CFRAF}}{\mathsf{FLIC}} +$

- In both cases 1st stage is ~OK but offers little Q² lever arm
- 2nd stage will match requirements fully

∤n e+Au

V/n e+Au

Dipole Model:

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2\mathcal{N}(x, r, b)$$

$$\mathcal{N}(x,r,b) = 2\left[1 - \exp\left(-r^2 \frac{\pi^2}{2N_c} \alpha_s(\mu^2) x G(x,\mu^2) T(b)\right)\right]$$

 $\mathcal{N}=\,$ Dipole Scattering Amplitude

Dipole Model:

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2\mathcal{N}(x, r, b)$$

$$\mathcal{N}(x,r,b) = 2\left[1 - \exp\left(-r^2 \frac{\pi^2}{2N_c} \alpha_s(\mu^2) x G(x,\mu^2) T(b)\right)\right]$$

$$\mathcal{N}=\,$$
 Dipole Scattering Amplitude

0 dilute, linear QCD ($\mathcal{N} \sim r^2$)

Dipole Model:

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2\mathcal{N}(x, r, b)$$

$$\mathcal{N}(x,r,b) = 2\left[1 - \exp\left(-r^2 \frac{\pi^2}{2N_c} \alpha_s(\mu^2) x G(x,\mu^2) T(b)\right)\right]$$

 $\mathcal{N}=\,$ Dipole Scattering Amplitude

- 0 dilute, linear QCD ($\mathcal{N} \sim r^2$)
- 1 saturated, non-linear regime

Dipole Model:

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2\mathcal{N}(x, r, b)$$

$$\mathcal{N}(x,r,b) = 2\left[1 - \exp\left(-r^2 \frac{\pi^2}{2N_c} \alpha_s(\mu^2) x G(x,\mu^2) T(b)\right)\right]$$

 $\mathcal{N}=\,$ Dipole Scattering Amplitude

- 0 dilute, linear QCD ($\mathcal{N} \sim r^2$)
- 1 saturated, non-linear regime

To assess typical values of $\mathcal N$ calculate average:

$$\langle \mathcal{N} \rangle_{2,L} = \frac{\int d^2b \, d^2r \, dz \, [\psi^* \psi]_{2,L} \, \mathcal{N}^2}{\int d^2b \, d^2r \, dz \, [\psi^* \psi]_{2,L} \, \mathcal{N}}$$

To assess typical values of $\mathcal N$ calculate average:

$$\langle \mathcal{N} \rangle_{2,L} = \frac{\int d^2b \, d^2r \, dz \, [\psi^* \psi]_{2,L} \, \mathcal{N}^2}{\int d^2b \, d^2r \, dz \, [\psi^* \psi]_{2,L} \, \mathcal{N}}$$

Measuring F_L with the EIC

 $F_L \sim \alpha_s G(x, Q^2)$: the most "direct" way to $G(x, Q^2)$

F_L runs at various
$$\sqrt{s}$$
 $\frac{d^2\sigma^{ep\to eX}}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2}\right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$

In order to extract F₁ one needs at least two measurements of the inclusive cross section with "wide" span in inelasticity parameter \mathbf{y} (Q² = sxy)

Coverage in x and Q² for inclusive cross section measurements

Feasibility study: $\sigma_r = F_2(x,Q^2) - y^2/Y_+ \cdot F_L(x,Q^2)$

 $Y_{+} = 1 + (1 - y)^{2}$

Strategies:

slope of y²/Y₊ for different s at fixed $\times \& Q^2$

e+p: 1st stage 5x50 - 5x325running combined 4 weeks/each (50% eff)

stat. error shown and negligible

To Do: Rosenbluth extraction & **Detector effects**

Syst. Uncertainties in F_L for staged EIC

F_L for electron energy fixed at 4 GeV and proton energies: 50, 70, 100, 250 GeV (4 fb⁻¹ each)

The magenta curves show the statistical and systematic errors (1% uncertainty in normalization) added in quadrature.

Again, the extraction of F_L is dominated by systematic uncertainties

Big issue for e+A: Radiative corrections

High precision requires knowledge of higher-order corrections

$$\sigma_{\text{experiment}} \Leftrightarrow \sigma_{\text{theory}}[\text{Fn}(x,Q^2)] = \sigma^{(0)} + \alpha_{\text{em}}\sigma^{(1)} + \dots$$

Emission of real photons

- experimentally often not distinguished from non-radiative processes: soft photons, collinear photons
- ⇒ "radiative corrections"

"Ideal" case:
$$Q^2 = -(l - l')^2$$
, $x_B = \frac{Q^2}{2P \cdot (l - l')}$

True case:
$$\tilde{Q}^2 = -(l - l' - k)^2$$
, $\tilde{x}_B = \frac{Q^2}{2P \cdot (l - l' - k)}$

Detecting Nuclear Breakup

- Detecting **all** fragments $p_{A'} = \sum p_n + \sum p_p + \sum p_d + \sum p_\alpha \dots$ not possible
- Focus on n emission
 - Zero-Degree Calorimeter
 - Requires careful design of IR

- Additional measurements:
 - Fragments via Roman Pots
 - γ via EMC

Traditional modeling done in pA:

Intra-Nuclear Cascade

- Particle production
- Remnant Nucleus (A, Z, E*, ...)
- ISABEL, INCL4

De-Excitation

- Evaporation
- Fission
- Residual Nuclei
- Gemini++, SMM, ABLA (all no γ)

Experimental Reality

Here eRHIC IR layout:

Need ±X mrad opening through triplet for *n* and room for ZDC

Big questions:

- Excitation energy E*?
- ep: $d\sigma/M_Y \sim 1/M_{Y^2}$
- eA? Assume ep and use E* = M_Y m_p as lower limit

Experimental Reality

Here eRHIC IR layout:

Need ±X mrad opening through triplet for *n* and room for ZDC

Big questions:

- Excitation energy E*?
- ep: $d\sigma/M_Y \sim 1/M_{Y^2}$
- eA? Assume ep and use E* = M_Y m_p as lower limit

Breakup simulators SMM & Gemini++ show it works:

- For E*_{tot} ≥ 10 MeV and 2.5 mrad n acceptance we have rejection power of at least 10⁵.
- Separating incoherent from coherent diffractive events is possible at a collider with n-detection via ZDCs alone

